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Abstract

The problem of hybrid nanofluid flow squeezed between two parallel plates while
being affected by an magnetic inclination angle field is taken into consideration.
The applied magnetic field inclination angle ranges from 0° degrees to 90° de-
grees. Additionally considered are viscous dissipation, Joule heating, and the
lower plate stretching velocity with suction or injection. With the help of the
shooting method and a fourth order Runge Kutta scheme, the transformed non-
linear governing equations are numerically solved. It is detailed how the velocity
and temperature are affected by the squeeze number, the magnetic parameter, the
magnetic inclination angle, the lower plate stretching parameter, the lower plate
suction/injection parameter, and the Eckert number, respectively. It is discovered
that the velocity and heat transfer in compressing flows are significantly influenced
by the inclination angle of the applied magnetic field. By changing the magnetic
field’s angle of inclination, it is to roughly determine how a magnetic field strength

affects velocity and temperature.
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Chapter 1

Introduction

When two plates move closer to each other, viscous fluids between the plates ex-
hibit a squeezing motion, which is normal to the plate surfaces. There are various
industrial uses for the squeezing flow, including liquid-metal lubricated bearings,
food processing, injection moulding, compression, squeezed films in power trans-
mission, cooling water, etc. Researchers are very interested in the analysis of
velocity and heat transfer in the squeezing flow between parallel plates because
of its broad range of practical applications. The first study about the squeezing
flow was reported by Stefan [1], when he investigated the lubrication system. Ste-
fan’s pioneering research opened up new paths and beneficial perspectives for the
study of squeezing flow. Later on, several expanding investigations on the squeez-
ing flow have been done. Squeezing flow investigation has received much attention
in recent years from a variety of research angles. In 2009, Ran et al. [2] ex-
plored a quasi-steady axisymmetric Newtonian fluid squeezed between two paral-
lel plates and used the homotopy analysis method to get an explicit series solution
of the dimensionless velocity. In 2009, heat and mass transfered in the unsteady
squeezing flow between parallel plates examined by Mustafa et al. [3]. Khan et al.
[4] obtained approximate analytical solutions for the squeezing flow of nanofluid
under the influence of viscous dissipation and velocity slip. Domairry et al. [5]
used a Duan-Rach method to discover an approximate analytical solution of the

unsteady squeezing flow of a nanofluid. Hayat et al. [6] investigated the influence

1



Introduction 2

of convective circumstances and chemical reactions on squeezing flow. In 2021,
Ahmad et al. [7] analyzed the impact of velocity, thermal and solutal slips effects
on squeezed fluid transport features. Hayat and Hina [6] discussed the effect on
Williamson fluid flow through mass and heat transfer with exible walls. Ahmad
et al. [8] aimed to theoretically examine the mixed convection characteristics in
the squeezing flow of Sutterby fluid in squeezed channel.

To maintain flow and heat transfer under the application of magnetic field has
important significance for multiple areas of physics, especially nuclear reactors
with MHD generators, geothermal extractions, plasma studies, aeronautical and
aerodynamic boundary layer control, etc. [9-22]. Recently, researchers have at-
tempted to investigate many elements and methodologies of the transfer behaviors
of conducting fluid between squeezing surfaces under the influence of magnetic
fields. The influence of a magnetic field on the unsteady hydromagnetic squeezing
flow of an incompressible two-dimensional viscous fluid between two infinite par-
allel plates studied by Siddiqui et al. [23]. In the presence of a magnetic field,
the squeezing flow between parallel disks were examined by Domairry et al. [5].
In 2015, Haq et al. [24] investigated the squeezed movement of nanofluid over
a sensor surface using MHD. Under the influence of magnetic fields the flow of
nanofluid squeezed over a porous stretched surface explored by Hayat et al. [6].
A slip analysis on the fluid-solid interface in the MHD squeezing flow of Casson
fluid through Porous Medium was presented by Khan et al. [25].

The magnetic fields which are being used in the squeezing flow discussed above
are perpendicular to the solid surface. On the other hand, we must take into
consideration that inclined magnetic fields might cause fluid flow issues that are
significantly more challenging and widely existent. In 2011, Hayat et al. [6] focused
on the impacts of inclined magnetic fields in their investigations of the flow and
heat transfer properties of Williamson fluid in a channel and nanofluid in an open
cavity, respectively. Rashad et al. [26] investigated the free convection flow in
a rectangular cavity in the presence of a uniform angled magnetic field. The re-
search on the squeezing flow subjected to angled magnetic fields needs further

investigation, according to the survey of related literatures that we have found.
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Acharya et al. [27] investigated the squeezing movement of Cu-water and Cu-
kerosene nanofluids flow between two parallel plates. Devi et al. [28] investigated
numerically the hydromagnetic hybrid Cu — AloO3/water nanofluid flow over a
permeable stretching sheet with suction. In 2020, Waini et al. [29] examined the
squeezing hybrid nanofluid flow over a permeable sensor surface with magneto-
hydrodynamics (MHD) and radiation effects. The Alumina (Al;O3) and Copper
(C'u) are considered as the hybrid nanoparticles and water is the base fluid.

Inspired by the above studies, the present investigation intends to explore the
flow and heat transfer characteristics of squeezed hybrid nanofluid flow between
two parallel plates under the influence of magnetic inclination angle field. In this
squeezing flow, the surface of the lower plate with suction/injection is stretch-
ing along the longitudinal direction. In addition, the effects of viscous dissipation
and Joule heating are also taken into account. By solving the resulting governing
equations numerically, the effects of the squeeze number, the magnetic param-
eter, the magnetic inclination angle, the lower plate stretching parameter, the
lower plate suction/injection parameter and Eckert number on the longitudinal

velocity and temperature are examined.

1.1 Thesis Contribution

In this thesis, a review study of Su and Yin [30] has been presented and then the
flow analysis has been extended in hybrid nanofluid flow. The Alumina (Al2Os)
and Copper (Cu) are considered as the hybrid nanoparticles and water is the
base fluid. The governing system of nonlinear PDEs is converted into a model of
nonlinear ODEs by using appropriate transformation of similarities. Numerical
results are obtained for the set of nonlinear ODEs by using the shooting technique
with Runge Kutta method of order four (RK4). The influence of various relevant

physical parameters has been discussed using graphs.
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1.2 Thesis Framework

This research work is further classified into four main chapters.

Chapter 2 contains some basic definitions, terminologies and governing equations
of the fluid which are needed for the upcoming chapters.

Chapter 3 contains the review work of Su and Yin [30], the effects of an inclined
magnetic field on the unsteady squeezing flow between parallel plates with suction
or injection. By utilizing similarity transformation we reduce the set of nonlinear
PDEs into a set of nonlinear ODEs and then solve numerically. Numerical results
are obtained for the set of nonlinear ODEs with the help of shooting technique.
Chapter 4 extends the work of Su and Yin [30] by considering hybrid nanofluid
flow between parallel plates. The transformation of similarities has been utilized
for the conversion of PDEs to ODEs. The transformed nonlinear ODEs are then
solved by using the shooting technique that is most common.

Chapter 5 summarizes the research work and gives the main conclusion arising
from the whole study.

All the references used in this thesis are presented in Bibliography:.



Chapter 2

Basic Terminologies and

Governinig Equations

In this chapter, some basic laws, concepts, terminologies and definitions are de-
fined. These concepts are necessary for the work presented in the incoming chap-

ters.

2.1 Fluid and its Properties

Scientists across the several fields study fluid dynamics. To study the problems in

fluid dynamics it is indispensable to explain properties of fluids.

Definition 2.1.1 (Fluid)
“A fluid is defined as a substance that deforms continuously when acted on by a
shearing stress of any magnitude. A shearing stress (force per unit area) is created

whenever a tangential force acts on a surface.” [31]

Definition 2.1.2 (Fluid Mechanics)
“Fluid mechanics is defined as science that deals with the behavior of fluids at

rest (fluid statics) or in motion (fluid dynamics), and the interaction of fluids with

5



Preliminaries 6

solid or other fluids at the boundaries.” [32]

Definition 2.1.3 (Fluid Dynamics)
“The branch of fluid mechanics that covers the properties of the fluid in the state

of progression from one place to another is called fluid dynamics.” [33]

Definition 2.1.4 (Fluid Statics)
“It is the field of physics that involves the study of fluids at rest. These fluids
are not in motion, that means they have achieved a stable equilibrium state, so

fluid statics is largely about understanding these fluid equilibrium conditions.” [33]

Definition 2.1.5 (Pressure)
“The continuous physical force exerted on the unit area of surface is said to be

pressure. It is expressed by P and mathematically, it can be written as,

F

pP==
A?

where F' and A denote the applied physical force and area of the surface.” [34]

Definition 2.1.6 (Density)

“Density is defined as the mass per unit volume. that is,
m
p= Va

where m and V' are the mass and volume of the substance, respectively.”[32]

Definition 2.1.7 (Viscosity)
“Viscosity of a fluid is defined as the measure of resistance to steady distortion
by shear/tensile stress. A notation used for viscosity is 1 and its mathematical

expression is,
shear stress

rate of shear strain’
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where 1 is called the coefficient of absolute viscosity /dynamics viscosity or simple

M
viscosity. The dimension of viscosity is [ﬁ] 7 [34]

Water is a thin fluid having low viscosity and on other hand honey is thick fluid

carrying higher viscosity. Usually liquids have non-zero viscosity.

Definition 2.1.8 (Kinematics Viscosity)
“The ratio of dynamic viscosity to density appears frequently. For convenience,

this ratio is given the name kinematic viscosity v and is expressed as,

where 1 denotes dynamic viscosity and p denotes density respectively.” [32]

Definition 2.1.9 (Nanofluid)
“The nanofluid is defined as the homogeneous mixture of the base fluid and
nanoparticles. The nanoparticles used in nanofluids are typically made of met-

als, oxides, copper, carbides or carbon nanotubes.” [34]

2.2 Classification of Fluid

The following are some important types of fluid.

Definition 2.2.1 (Ideal Fluid)

“A fluid which is incompressible and has no viscosity is known as an ideal fluid.” [35]

Definition 2.2.2 (Real Fluid)
“A fluid which possesses viscosity is known as a real fluid. All the fluids in actual

practice are real fluids.”[35]

Definition 2.2.3 (Newtonian Fluid)
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“A real fluid in which shear stress is directly proportional to the rate of shear
strain (or velocity gradient) is known as a Newtonian fluid.” [35]
The common examples of Newtonian fluids are air, oxygen gas, alcohol, milk, glyc-

erol and silicone/thin motor oil etc.

Definition 2.2.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not proportional to the rate of shear strain
(or velocity gradient) is known as a Non-Newtonian fluid.” [35]

Examples of Non-Newtonian fluids are toothpaste, ketchup, starch suspensions,

custard, maizena, shampoo, paint and blood etc.

2.3 Types of Fluid Flow

In this section, we discuss some basic types of fluid flow with their examples.

Definition 2.3.1 (Flow)
“It is the deformation of the material under the influence of different forces. If the

deformation increase is continuous without any limit then the process is known as

flow.” [33]

Definition 2.3.2 (Laminar and Turbulent Flow)

“When the fluid partical follows a smooth trajectory, the flow is then said to be
laminar. Further increases in speed may lead to instability that eventually pro-
duces a more random type of flow that is called turbulent.” [36]

Examples of laminar flow are blood flow, aircrafts, rivers/canals etc.

Examples of turbulent flow are blood flow in arteries, oil transport in pipelines,

lava flow etc.

Definition 2.3.3 (Steady and Unsteady Flow)
“A flow is said to be steady flow in which the fluid properties do not change with

time at a specific point. Mathematically, it can be written as,
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o\
-0

ot ’

where A is any fluid property. A flow is said to be unsteady flow in which fluid

properties change with time. Mathematically, it can be written as,

N,
5 #0733

Examples of steady flow are pipes, nozzles, diffusers, pumps etc.
Examples of unsteady flow are passage of a flood wave, operation of irrigation and

power canals, tidal effects, junctions, measures to control floods etc.

Definition 2.3.4 (Compressible Flow)

“A flow in which the density variation is not negligible is known as compressible
flow.” [37]

Examples include aerodynamic applications such as flow over a wing or aircraft
nacelle as well as industrial applications such as flow through high-performance

valves.

Definition 2.3.5 (Incompressible Flow)

“A flow in which the density remains constant throughout is known as incompress-
ible.” [37]

Example of incompressible fluid flow is, the stream of water flowing at high speed

from a garden hose pipe.

Definition 2.3.6 (Rotational Flow)
“Rotational flow is that type of flow in which the fluid particles while flowing along
stream-lines, also rotate about their own axis.” [35]

An example is the flow of water in a pipe of constant diameter at constant velocity.

Definition 2.3.7 (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing
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along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [35]

Definition 2.3.8 (External Flow)
“The flow which is not bounded by the solid surface, is known as external flow.”
[38]

The flow of water in the ocean or in the river is an example of the external flow.

Definition 2.3.9 (Internal Flow)
“Fluid flow which is bounded by the solid surface is called internal flow.” [38]

The examples of the internal flow are the flow through pipes or glass.

2.4 Heat Transfer Mechanism and Related Prop-

erties

Heat transfer is a phenomena that convey energy and entropy from one location

to another. The formal definition of heat transfer is provided as follows:

Definition 2.4.1 (Heat Transfer)
“Heat transfer is a branch of engineering that deals with the transfer of thermal
energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [39]
Following are the important modes of heat transfer.

Definition 2.4.2 (Conduction)

“Conduction is the process in which heat is transferred through the material be-
tween the objects that are in physical contact.” [33]

Examples of conduction are, a lizard warming its belly on a hot rock, touching a

hot seatbelt when you get into a car.
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Definition 2.4.2 (Convection)

“Convection is a mechanism in which heat is transferred through fluids (gasses or
liquids) from a hot place to a cool place.”[33]

Examples of convection are, boiling water, air conditioner, body blood circulation,

melting of chilled drinks, refrigerator etc.

Convection is subdivided into the following three types.

Definition 2.4.3 (Forced Convection)

“Forced convection is a process in which fluid motion is produced by an external
source. It is a special type of heat transfer in which fluid moves in order to in-
crease the heat transfer. In other words, a method of heat transfer in which heat
transfer is caused by dependent source like a fan and pump etc, is called forced
convection.” [40]

Examples of forced convection are using water heaters or geysers for instant heat-

ing of water and using a fan on a hot summer day.

Definition 2.4.4 (Natural Convection)

“Natural convection is a heat transport process, in which the heat transfer is not
caused by an external source, like pump, fan and suction. It happens due to the
temperature differences which affect the density of the fluid. It is also called free
convection. ”[40]

The most common examples of the natural convection are:

Sea breeze: This phenomenon occurs during the day. The sun heats up both the
sea surface and land.

Land Breeze: This phenomenon occurs during the night when the situation re-

verses.

Definition 2.4.5 (Mixed Convection)
“A method in which both forced and natural convection processes simultaneously

and significantly involve in the heat transfer is called mixed convection.” [40]
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An example of this is a fan blowing upward on a hot plate.

Definition 2.4.6 (Thermal Radiation)
“The ejection of electromagnetic waves from the matters that have temperature
higher than absolute zero is called thermal radiation.” [34]

For example: Daily weather.

Definition 2.4.7 (Thermal Conductivity)
“Thermal conductivity (k) is the property of a material related to its ability to

transfer heat. Mathematically,

dQ AT
% = —liA (@) ,
dQ dT

where A, k, —, — are the area, thermal conductivity, the rate of heat trans-

dt ' dx
fer and the temperature gradient respectively. With the increase of temperature,

thermal conductivity of most liquids decreases except water. The ST unit of ther-

mal conductivity is and its dimension is W.” [40]

53
Definition 2.4.8 (Thermal Diffusivity)
“ The ratio of the unsteady heat conduction x of a substance to the product of

specific heat capacity C),, and density p is called thermal diffusivity.

2
The unit and dimension of thermal diffusivity in SI system are ™ and (LT
s

respectively.” [37]

2.5 Dimensionless Numbers

The following dimensionless number will appear in the discussion given in next

chapters.
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Definition 2.5.1 (Skin Friction)
“ Skin friction coefficient represents the value of friction which occurs when fluid

moves across the surface. Mathematically,

27,

O, = 2«
T Uz

where 7, is the shear stress at the wall, p the density and U, the free-stream ve-

locity.” [41]

Definition 2.5.2 (Nusselt Number)
“ The hot surface is cooled by a cold fluid stream. The heat from the hot surface,
which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu=—,
K

where ¢ stands for convective heat transfer, L for the characteristics length and

stands for the thermal conductivity.” [42]

Definition 2.5.3 (Prandtl Number)
“The ratio between the momentum diffusivity v and thermal diffusivity « is called

Prandtl number. Mathematically, it can be defined as,

where 1 represents the dynamic viscosity, C), denotes the specific heat and « stands
for thermal conductivity. The relative thickness of thermal and momentum bound-

ary layer is controlled by Prandtl number.” [40]
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Definition 2.5.4 (Reynolds Number)
“ It is a dimensionless number which is used to clarify the different flow behaviours
like turbulent or laminar flow. It helps to measure the ratio between inertial force

and the viscous force. Mathematically,

Re = —,

v

where U denotes the free stream velocity, L the characteristics length. At low
Reynolds number, laminar flow arises where the viscous forces are dominant.
At high Reynolds number, turbulent flow arises where the inertial forces are

dominant.” [40]

Definition 2.5.5 (Eckert Number)
“ It is the proportion of the kinetic energy dissipated in the flow to the thermal

energy conducted into or away from the fluid.” [41]

2.6 Conservation Laws

Several conservation laws such as the law of conservation of mass, energy and
momentum are of great importance for the researchers. These laws are applied
to closed systems and then extended to region in space called controlled volumes.

We now give a brief discussion of some important conservation laws.

Definition 2.6.1 (Conservation of mass)
“ The principle of conservation of mass can be stated as the time rate of change
of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as:

dp
i + V. (pu) =0,

where ¢ is time, the fluid density is p, and the fluid velocity is u.” [39]
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Definition 2.6.2 (Conservation of Momentum)

“The momentum equation states that the time rate of change of linear momentum
of a given set of particles is equal to the vector sum of all the external forces act-
ing on the particles of the set, provided Newton’s third law of action and reaction

governs the internal forces. Mathematically, it can be written as:

9 (ow) + V. [(pupu] = VT + pg."[39]

Definition 2.6.3 (Conservation of Energy)
“The law of conservation of energy states that the time rate of change of the total
energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

o)
a—f+V.puz—V.q+Q+¢,

where ¢ is a dissipation function, ¢ is heat generation parameter and () is heat

constant.” [39]

2.7 Solution Methodology

Shooting method is used to solve the higher order non-linear ordinary differential
equations. To implement this technique, we first convert the higher order ODEs
to the system of first order ODEs. After that we assume the missing initial con-
ditions and the differential equations are then integrated numerically using the
Runge Kutta method as an initial value problem. The accuracy of the assumed
missing initial condition is then checked by comparing the calculated values of
the dependent variables at the terminal point with their given value there. If the
boundary conditions are not fulfilled up to the required accuracy, with the new

set of initial conditions, then they are modified by Newtons method. The process
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is repeated again until the required accuracy is achieved. To explain the shooting

method, we consider the following general second order boundary value problem.

9"(x) = f(z,9,9'(x)) (2.1)

along with the boundary conditions:

9(0) =0, 9(Q) = Z. (2.2)

To have a system of first order ODEs, used the notations:

g =10, 91 = g2. (2-3)

By using the notations (2.3) in (2.1) and (2.2), we have the following IVP:

g/ — 927 g1<0) = 0,
1 (2.4)
gé:f(xvglaQQ)a 92(0>:h
Now, the initial value problem satisfy the boundary condition ¢;(Q) = Z,
91(Q,h) — Z = ¢(h) = 0. (2.5)

To find an approximate root of (2.5) by the Newton’s method, is written as,

I
P = hyp — gﬁ}_> (2.6)
(Fn)h=hn
or
ha) — 2
hoss = hy — — 91(hn) (2.7)

Bh [g1(R) — Z]h:hn'
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To implement the Newton’s method, consider the following notations,

dg1 092
k- =22 — q,. 2.
These new notations will give the Newton’s iterative scheme its form,
91(h) — 2
i1 = hy — ————. 2.9
+1 g3(h) ( )
Now, differentiating (2.4) w.r. to h, we get:
95 = 94, 93(0) = 0.
(2.10)

_of af _
g4 938 +94a2 94(0) = 1.

Rewriting the above four first order ODE’s (2.4) and (2.10) together, we have the
following IVP:

gi = g2, 91(0) =0.

9o = f(x. 91, 92), g2(0) = h.

95 = Ga, g3(0) = 0.
of of

gy _9389 +g4892

Runge Kutta method of order four will be used to numerically solve the above
system as a whole.

the Newton’s technique stopping criteria is set as:

91(h) = Z] <€,

for an arbitrarily small positive value of e.



Chapter 3

Effect of Inclined Magnetic Field

for Squeezing Flow

3.1 Introduction

In this chapter the detailed analysis of the work presented by Su and Yin [30]
is discussed. The description of the empirical research of inclined magnetic field
effects with suction/injection between parallel plates on the unsteady squeezing
flow is reviewed in this study. By using suitable similarity transformations, the
controlling partial differential equations are converted into ordinary differential
equations. The numerical solution for the differential equations are obtained by
utilizing the shooting technique. Graphs are represented to show the physical sig-
nificance of distinct dimensionless quantities. By varying the values of the different

parameters, we observed the trend of the velocity and temperature distributions.

3.2 Mathematical Modeling

Considering the unsteady squeezing flow of an incompressible fluid electrically
conducted fluid which is confined between two infinite parallel plates. The flow

is subjected to an inclined external magnetic field B. The lower plate channel

18
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is along the x-axis, so it is normal to the y-axis. Consider the time dependent
magnetic field
B = (B,, cos", By, sin~,0),
in which B,, denotes By(1 — at) = and v is the angle of inclination with respect
to x-axis. The induced magnetic field is assumed to be negligible for a small
magnetic Reynolds number. The gap between two plates
Ht) =1(1 - at)?,
changes with the time ¢, where [ is the initial gap between the plates at the time

t=0[6).

y=H(!) I I T T T LT T T T LT T T

Iy

B Vi

A

T
) R U, xu
J—-‘:[} ll!ll’l!liflllfli! NENENENINNEEEEEEN N
L

Vv vV

4 (3

FI1GURE 3.1: Geometry configuration of the problem.

The case of a > 0 corresponds to the squeezing motion of plates, whereas o < n
the plates move apart. Along the direction normal to the xy-plane, the velocity
and temperature can be seen as unchanged. The Ohm’s law gives the form of
the current density vector J [43]:
J=0(V xB) = (0,0,uB,,siny, vB,cosvy),

in which o is the electrical conductivity, and V = (u,v,0) is the velocity vec-
tor. Utilizing the above equation, we obtain the Lorentz force:

J x B = (0 B2 vsinycosy — o B2 usin?y, 0 B2 usinycosy — 0 B2 vsinycos®y,0),
and the joule heating:

1J.J = 0 BZ (u*sin®y + v3cos®y — 2uvsinycosy) .

The flow is described in the presence of suction/injection, viscous dissipation and

Joule heating by continuity, momentum and energy equation are as follows:
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Continuity equation:

ou Ov
T — 1
o + 9y 0 (3.1)

Momentum equation for u-velocity:

%—Fua—u—l—v@—_—l@—i—ﬁ 82u+82u +aBglsin (vcosy —usiny). (3.2)
ot 0x Oy p Or p\0x? Oy? p 7 7 1A

Momentum equation for v-velocity:

@+u@+v@_i@+ﬁ 620+82U +O—anCOS (usiny —wvcosy). (3.3)
ot dx Oy p Oy p\Ox2 Oy? p 7 K e

Energy equation:

ou\? ov\?
2(5) +2(5)

o or OT k(9T oT\
ot " ox U@y - pC, \ 022 Oy? pC,
ou ow\’| oB% , | 2
(8_y + %) + oC, (usiny —wvcosy)”. (3.4)

Here u and v are the velocity components of the fluid along the x and y direction,
respectively. T is the temperature, u is the total dynamic viscosity, p is the density,
C), is the real heat capacity of the fluid, and & is the thermal conductivity of the
fluid.

Boundary conditions executed on lower and upper plates are:

bx Vg )
U=1u; = —— V=U, = ————
S (& (1 t)%’

_dH al (3:5)

11—«

T,
sz:%+64%>cwy=mw

Vs

Here, us denotes lower plate stretching velocity, v. represents lower plate mass flux
velocity, vy denotes upper plate velocity, Ty is lower plate surface temperature and
Ty denotes upper plate surface temperature.

The following similarity transformations are used to convert partial differential



Inclined magnetic field effect 21

equations into set of ordinary differential equations.

3
u= gyvaf(n),

v = 'UHf(n)v

T—1T,
0(n) = ——-, 3.6
)= 7—5 (36)
= Fa

H(t) =1(1—at)2.

Vs

3.3 Dimensionless Structure of the Governing

Equations

Substituting (3.6) into the L.H.S of continuity equation (3.1), we get:

0 [[;—(%UH]U (77)} N dvuf (n)]
Ox oy

where,

vy=——=————— and n =

hence, we obtain,

al , al
20 —antr® T a0 —enta®

Thus, the continuity equation is satisfied identically.

To convert momentum equations (3.2) and (3.3) into dimensionless form, we will
first eliminate the pressure term. For this purpose, we differentiate (3.2) and (3.3)
w.r.to y and x respectively. The following are some important derivatives, which

will be used to convert (3.2) into the dimensionless form:

Ty T —al R
= H<t)va (n) = ” (2(1_%)%) f(n) = 2(1—at)f(n)’
ou  a’zf aPzy f”

ot 2(1—at)? 41— at):
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. ﬁ @ B 30&2.Tf” N a%yf’”
oy \ ot ) 41(1 — at)% 412(1 — at)3’
ou o ,
u% _ o2z f”
or  4(1 —at)?’
0 ( 8u) a’zf "
o U | =7
Oy \ dr/) 2(1-at):
ou ox "
dy 21— at)%f )
U% _ _04217ff”
oy 4(1 — at)?’
o ( au> —OézlL’f/f// OAQZL’ffm
¢ (v )= 5 5
dy \ 9y 41 —at)z 41— at)?
ou
=0
Ox ’
0%u
o0
Ox? ’
2
o (7Y,
Oy \ Ox?
0%u ax w
oy 202(1 — at)zf (n):
. a (8%) _axft™)
dy \ 9y? 203(1 — at)3’
o O (_Lop\_ 10
oy\ pox)  poxdy’
0%u _ om (K)f”’
oy 21 —at)2 27 7
)2
B = B(l-at)y!, 5= _t0Zal"
x T
o0 |oB2 . al ax , ,
°* — siny | —— cosy — ————— sin
o | ) ’y( 2(1_at)%f(n) gl 2(1_(%)]”(77) 7)]
= —UBTQ” of sin 7y cos y — B, __axf” sin?
p 20—at) T T i —ani
Using all of the derivatives calculated above in (3.2), we get:
30./2If" annf/// CYQZL‘fIf” B OéQZL‘ff”/ B U Ozl“fiv
Al(1—at)s 41 —at)s  4l(l—at)s  4l(l—at)s  P2A31 —at)s
oB:  af oB%  axf” 9 1 8%p
+ —= siny cosy + —= sin“y = —— : 3.7
po2l—at) T T —ant T T poady (37)
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The following derivatives are necessary, when we differentiate (3.3) w.r.to z,

al
v=uvgf(n) = —mf(n),
ov a?lf a?yf!

ot A1-a) 4(1-at)?

0 [0v
o — | —1]=0
Ox \ Ot ’

ov
9z =
0%v
Frial
9 (0%
o (%Y%) =0
Oz \ 0x? ’
(921) a f//

p Oy p 0zdy
oB2 axf . N alf oB2 af'sinycosy
o cos”y | ————siny + ———— cos =
p T2t —at) T T s p 21— at)

Using all of the derivatives calculated above in (3.3), we get:

oB2 af , 1 0%p
— S111 7Y COS = —
p 2(1—at) TERT

p0zdy’

For the elimination of pressure term equating (3.7) and (3.8), we get:

(3.8)
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L al,f(iv) B a2xnf/// B 3&236]“/ B Oé2£Bf/f” N (1/2$ff”/ B O_an
P2B3(1—at):  4l(1—at):  4l(1—at)s 41 —at)?  4(l—at)s P
af’ ) oB%  axf” 9 oB2  af _ 0
—————sinycosy — sin®~y — sinycosy = 0.
21 —at) T, 21(1 — at)? T 2 —an) T
203(1 — at)?
Dividing the above equation by d (1= at): , yields,
1 ox
(iv) plzomf”’ 3pl2af” pl2af/f// ,OZZOCff”/ 20'B72nl3(1 _ Ozt)%f/
jo - - - -
20 20 20 21 W
BZ l2 1— ot "
sin'ycos'y—a w1 = at)f sin?y =0,
1
[ pl2a O'B()l2
= f( ) _ QM (nf///+3f//+f/f// . ff///) . y

siny (sinyf” + 25 cosyf') = 0,
where,
o B212 al?

B2 =B}1—at)™', M?= S =—.
m O( O./) ) pV’ 21/

Finally, the dimensionless form of (3.2) and (3.3):
f(z‘v) -9 (nf/// + 3f// + f/f// _ ff///) . M2 sin’y (sinyf” + 28 COS’)/f/) —0.

For the conversion of the temperature equation (3.4) into an ordinary differential

equation. The following derivatives are evaluated:

Ty oT Toay Toa
T =6 — = 6 6
) (1 - 005) e ot 2(1 — at)s " (1—at)?”’
ua—T =0, o __ T -0,
O Ay U(1—at):
2
0T _ TO 9/,’ U@_T _ T()Oé f9/7
0y?  12(1 — at)? 0y 2(1 — at)?
ou__ar 00___af
or  2(1—at)’ oy 2(1—at)’
ou axf” ov
TPy E— - =0,
9y 2(1—at): Oz
u@_T =0, 8_T = ngla
O dy 11— at):
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Using the above derivatives into (3.4), to get:

Tooy , Tha Tho | K Th 9 I
0 — 0 = 0 —
21—t G-at? 2-atp? oG \FA-ar? ) TG,

2 2 2
a2z f" N a?f! N oB2 ax f'sin~y N alfcosvy
A2(1 —at)? (1 — at)? pCp(l —at) \ 2(1 —at)  2(1—at)z ) ’

~ 2(1T0—a;7t) o'+ (1 j—ﬂozt)Q(9 a 2(1%0;15)2f = (pgp) <l2(1 foat)ﬁ//)
2 2 12 2
vy <4l2<1 —f;t>3 T —Ztv) el ﬁ ~al)
<4(&123i—2£:)2 sin? v+ % cos? Y+ % sin 7y cos 7)
2, 2
~ ﬁ (nf" +20 = f0') = Cp(1 1— at)? /Z;O ’ Cp(ll— at) 4l2(yl&—xat)2
(" 487 gy (74 T
+20 f f' siny cos ),
- ﬁ (10" +26 = 10) = =3 - at)? [;ﬁ ot 452?2—3320415) (v
+462f’2> % (f sin® vy 4 02 f2cos® y + 20 f f sinycos*y)] ,
= Do 120 5) = o {“TO "+ 2_36;) (17 +a02s”)
% < #sin? vy + 622 cos® v + 2§ff’sinfycosv)} :
= T;O‘( 0 +20— f0) = cyp {HT09,+ 4(1@?;) (f”2 +452f’2)
+M2% (f’ sin?y + 62 f% cos® v + 25ff’sin’ycos*y)] ,
~ T;a (nff +20 = f0) = CVP 4(? Q_mlt) [4(;29;2 >/;j;0 SR
+M? (f’2 sin®y + 62 f% cos® v + 26 f sinfycosv)} ,
N 2T,C, 1% (1 — at) (' +20 — 10') = 4(1 — at) KTOG/,+f,,2 L ag2 g

vax? a’z? pu

+ M> <f’2 sin27+(52fzcoszfy+2(5ff’sin”ycosy) ,

2T0Cy1* (1 — at) , n Al —at)kTy [,, pra’x? >
:> 9 29 — 9 = — — - ( 14
vor? (nf + 1%) a?x?  pv KTo4(1 — at) /
2 pralz? 2
+482 f! ) + M (f’ sin® v + 6% f% cos® y + 25ff/sinycosy> ,
kTod(1 — at)
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Mcpalz / ’ % pVQQIQ < 2 9 ,2>
= ——— ' +20—f0)=0"+ ———— 46
2UK (n + f ) + HT04(1 - Oét) f + f
2.2
+ %Mz <f/2 sin? y + 62 f2 cos® y + 20 f f' sin 7y cos 7) ,
uCpaF ) ) ; pvals? [ o )
= ——— ' +20—f0)=0"+ ———— 468
2vk 6+ 19) * kTo4(1 — at) Jrrary
+M? <f/2 sin?y + 62 f2 cos® y + 20 f f/ sinfycosy)} ,
C,al? pvalz? , i
= ¢ HEpat” 0 — np — 20 [ " 4852 f!
* 2UK (0" = )+ KTod(1 — at) Jrary
+M? <f’2 sin?y 4 82 f2cos® vy + 20 f f sinycosyﬂ =0,
where,
pr =t g
K ’ 2]/ Y
U2 u0(5
EC — 0 y R g —
CpR2(Tw — To) VH
bx al
(% = v - —_—
Tt T o —at)l
TO 21)0
n "1 —at’ b ol
ua2x20p<1 oty uG, 022
4kCyTo Kk AC,TH(1 — at)
_pr a?r?uds?
4C,To(1 — at) R?v,
2.2
=Pr b
CpTo(l — Odt)R2
2.2
=Pr b
Cp(Ty —Tp)(1 — at)?R?
_ Pr b2.’132
T Co(Tw — To)R2 (1 — at)?
P2
-0 ___ _ PrE,.

Op (TH - TO)R2

Finally, the dimensionless form of (3.4):

0"+ PrS ({6 —nf - 26) + PrE, [ " +45*f"

+M? (f’2 sin?y 4 6% f2 cos? v + 25ff’sin'ycosfy>} =0.



Inclined magnetic field effect

27

The following procedures have now been taken to transform the corresponding

boundary conditions into the dimensionless form:

e u=us; at y=020,

T

H(t)UHf/(n) =us at n= 07

1N ugH (t)

f'(n) = p—

sy UsO

F0) =22,

f0)=R

o V= — al at y =
(1—at)z ’
— Yo —
. 21)0
f(0) =5,

1—at
e<0>=(1f“m)— |
6(0) =0
e u=0 at y=H(t),
)
f(1)=0

e v=uvy at y=H(t),

vgf(n) =vg at n=1,

f1) =1

T
o T=Ty+ —2

1—at

at

y=H(t),

T T
0(7]>( 0 )+T0:T0+1 Ot at

1— ot

—

1o

1.

ea):(l?LJzzl—at:

n=1,
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Hence, we get the following set of ordinary differential equations:

f(iv) -9 (Uf’" + 3f” + f/f// . ff///) . M2 SiH’)/ (Sinvf" +25 COS’}/f/) =0, (3_9)

0" + PrS (f¢ —no — 26) + PrE, [ 71482 f”

+M? (f’2 sin?~y 4 02 f2 cos® vy + 20 f f sin ~y cos 7)} =0, (3.10)
subject to boundary conditions:

f(0) =S, [f(0)=R, 6(0)=0,
fy =1, f(1)=0, 0(1)=1,

(3.11)

where S is the squeezing number, Pr is the prandtl number, M is the magnetic
parameter, E, is the Eckert number and R is the lower plate stretching parameter.
The lower plate suction/injection is denoted by S, with S, < 0 for injection and
S, > 0 for suction.

Before going toward the mathematical solution, the skin friction coefficient C'y or
the shear stress and the Nusselt number Nu or heat transfer coefficient on the

lower plate surface are represented as:

ou
K ( 9y > y=H(t)
vhp
(%)
W) y=H()

Nu =
A

The following steps elaborate the conversion of 'y and Nu into dimensionless

form:

UTUE

" _ Hx "
—mf () = ———~+—7=f"(n),

pupl2(1 — at)
T
Cr=— - 1),
o 2(1 _
p (2(1—at)%) Pl - at)

Cy =
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2ux

I A "
o _at)%f (n),
31— at)z
f"(n) = pa(u—xaﬁcf’ where y = H(t) and n=1,
301 1 31 _ 1
(1) = pal®(1 — at) C;y — al (i - at) c,
vpx e
al3(1 — at)2
f//(l) - TRGIOJC,
al3(1 — at)2
(1) = T Re,Cy,
(1—at)
al3(1 — at)2
) = PO e o
Now,
(%)
Nu: 0y y=H(t)
Ty —Tp
l To
Nu = 9, )
T —Tol(1 — at)2 ()
l (TH — To)(]_ - Oét) T() ,
Nu = , where Ty =Ty + ————0'(n),
1—at
u= 12 gy,
(1—at)?

(1) = (1 — at)2Nu, where y= H(t) at n=1,

Here Re, represent the local Reynolds number which is used to categorized the

flow pattern.

3.4 Numerical Treatment

This section is dedicated to the implementation of the shooting method to solve
the transformed ODEs (3.9) and (3.10) subject to the boundary conditions (3.11).

One can easily observe that (3.9) independent of 0, so we will first find the solution
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of (3.9). For this purpose, the following notations are used:

f=a,
f'=g91= g,
1= g5 = gs,
f" =95 = gs,

F = gi.

Utilizing the above notations, we have the following system of four first order

differential equations:

g1 = 9o;
g5 = G3;
g5 = 9a;

gy = S(393 + 194 + G293 — G194)

+M? sin (26 cos ygs + sinvg);

. . 2’[]0 )
gl(o) - Sb - Oél ’
Ug0
92(0) =R = Vi )
95(0) = au, (3.12)
g4<0) = (9.

/

To solve the above system by using Runge Kutta method of order four, two missing

initial conditions are assumed to be aq and as, such that:

g1(n, 01, 00)p=1 — 1 =10,

g2(n, o1, 00) =1 — 0 = 0.

These non-linear algebraic equations are solved for ar; and a5 by Newton’s method

which has the following iterative scheme:

un+1 u™ %
— _ |0y

,UnJrl N ™ %
(9061

) gp(onan) -1
gi\aq, Qg) —
%322 (3.13)
— ga(ar, az) — 0
8&2

To incorporate the above formula, we further need the following derivatives:

o9 _ 0g2 _

day = s, 87«1 = Yo,

091 _

9% _,
8051 75
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o9 _ 992 _ 995 _ 991 _
Do 9o, Dy g10, Dy 911, Dy g12.

As the result of these notations, the Newton’s iterative scheme gets the form:

-1

ay, ) — 1
_ |95 99 g1(ar, az) . (3.14)

g6 Y10 g2(a1, a2) =0
In order to achieve the numerical solution, we further differentiate the ordinary
differential equation (3.2) w.r.to oy and as. Hence, the following system of twelve

first order coupled differential equation is achieved with initial values.

2U0
,: . O :S —
g = g2 91(0) = Sy T
Ug0
95 = g3; 92(0) = R=—,
VH
g5 = ga; g3(0) = ay,

gy = S(393 + 194 + 9295 — 9194)

+ M?sin (28 cos yg + sinygs); 94(0) = ay,
95 = 96; 95(0) =0,
96 = 97; 96(0) = 0,
97 = 9s; 97(0) = 1,

g5 = S(397 + ngs + gegs — 9591 + G297 — 919s)

+ M? sin (26 cos Yge + sin vgr); gs(0) = 0,
9o = 910; 99(0) =0,
10 = 15 910(0) =0,
91 = G12; g11(0) =0,

g5 = S(3g11 + ng12 + 91093 — Goga + G291 — 91912)

+ M? sin (20 cos ygio + sinygn); 912(0) = 1.

The Runge Kutta method of order four is used to solve the above initial value

problem, where a; and ag are unknown initial conditions. The iterative process
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is repeated until the criteria listed below is met:

HlaXH 91(7770417042) -1 |7 | 92(77’ a17a2) H <€,

for an arbitrarily small positive value of €. Throughout this chapter ¢ has been
taken as (10)7°.
Since (3.9) and (3.10) are coupled equations. So (3.10) will be solved separately

by incorporating the solution of (3.9). For this purpose let us denote:
9:}/1’ 0’:)/1/:}/2’ 8”21/2/’
to get the following first order ODE’s.

W= Y1(0) = 0,
Vi =~ [P (f¥s =¥y — W) + PE {7 4 452 (3.15)
+M? (f’2 sin? y + 262 cos? y + 20 f f' cos 7y sin ’y) }] . Y5(0) = m.

The above IVP is solved numerically by Runge Kutta method of order four. In

the above initial value problem, the missing condition m is to be chosen such that:
Yi(n,m)y= —1=0. (3.16)

To solve the above algebraic equation (3.16) the Newton’s method is used which

has the following iterative scheme:

oY\~
== (G0) il - 1),

Further considering the following derivatives:

oY, v 8Y2_

—— =Y3 — f
om ’ om ’

to formulate the following Newton’s iterative scheme:

m" =" — [Ya(n,m")ym] T (Yi(n,m")ger — 1) (3.17)
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Here n is the number of iterations (n =0,1,2,3,4,5,...).
To incorporate the new derivative Y3 and Yy system (3.15) is further differentiated

w.r.to m, to get the following IVP:

Y =Yy Yi(0) =0,
Yy == | RS (fYs = nYs = 20) + P { " 4 402

+M? (f’QsinZ’y—i-f2520052’y+25ff’cosvsin’y> }] ; Y5(0) = m,
Yy =Yy ¥3(0) =0,
Y] =—P.S(fYs—nY)—2Ys3); Yy(0) = 1.

The Runge Kutta method of order four has been used to solve the IVP consisting
of the above four ODE’s for some suitable choices of m. The missing condition m
is updated by using Newton’s scheme (3.17). If the following criterion is fulfilled
the iterative process is stopped:

Yi(n,m) —1] <,

for an arbitrarily small positive value of e.

3.5 Results and Discussion

In this section, the numerical results are displayed graphically to perceive the
physical properties of flow more transparently. The variation in the velocity and
temperature profiles are represented with graphs by varying the parameters such
as the angle of inclination, the magnetic parameter, the squeeze number, the Eck-
ert number and the parameter of the lower plate suction/injection.

Figure 3.2 and Figure 4.2 displays the impact of the squeeze number S on the
velocity f/(n) and temperature 6(n) respectively. Figure 3.2 shows that the ve-
locity sharing of fluid in the regions near the upper or lower plates decrease due
to increase in the value of the squeeze number. Although an opposite trend is

noticed for the velocity of fluid near the central region of the plates. Figure 4.2
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indicates that a increase in S causes a decrease in fluid temperature between par-
allel plates.

Figure 3.4 and Figure 3.5 demonstrate the velocity and temperature profile of
the fluid with different magnetic parameter values. From Figure 3.4, it is noticed
that at a particular time, arising magnetic parameter causes the fluid velocity
to a very slight increase in regions near to the upper or lower plates, while the
fluid velocity in the central region indicates an obvious decrease. The fluid at
the central area has a higher velocity relative to the fluid near to plates and it
is due to high Lorentz force. The Lorentz force gives a conflict in the motion of
fluid. It is seen from Figure 3.5 that the temperature increases with magnetic
parameter rise. Moreover, the temperature of the fluid monotonically increases
from the lower to the upper plate area while the parameter of the magnetic field
is small. The fluid temperature achieves maximum value for larger magnetic pa-
rameter values not on the upper plate area but at the central area of the plates.
However, stronger magnetic fields naturally influence the temperature distribution.
This is mostly due to corresponding changes in joule heating and the heat caused
by the fluid friction with the increment in applied magnetic field. The effect of
the friction forces of fluid is increased by Lorentz force in the presence of the
magnetic field. Moreover, the larger friction resistances create more heat in fluid
with magnetic field increasing.

Figure 3.6 and Figure 3.7 represent the velocity and temperature behaviors by
rising the inclination angle of the magnetic field applied. The angles of magnetic
inclination varies from 0 to 7/2. Both figures depicts the same behavior for veloc-
ity and temperature profile, when they are compared for various value of magnetic
parameter. The influence of the inclination angle on both fluid temperature and
velocity profile is similar to those of the magnetic parameters.

Figure 3.8 and Figure 3.9 illustrate the impact of stretching parameter on dimen-
sionless velocity of stretching parameter and temperature of the lower surface,
respectively. From Figure 3.8, we conclude that the fluid velocity near the lower
plate rises in order to increasing the value of the lower plate stretching function

while the velocity of the fluid near the upper plate decreases. Since the parameter
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for lower plate stretching is increasing gradually, the fluid with the maximum ve-
locity does not appear in the central area between the plates, but at the surface of
the lower plate. Figure 3.9 shows that the increasing lower plate stretching causes
the temperature of fluid near the lower plate initially decrease and then increase.
But the temperature of fluid near the upper plate lowers with greater lower plate
stretching parameter.

Figure 3.10 and Figure 3.11 illustrate the effect of the lower plate suction/in-
jection parameter on the profiles of the velocity profile and temperature profile,
respectively. Figure 3.10 indicates that with increase in the lower plate injec-
tion/suction parameter, the velocity profile falls. The fluid having peak velocity
does not occur in the central area when extending the lower plate for stronger suc-
tion through the lower plate and the velocity of the fluid monotonically decreases
from the surface of the lower plate to the upper plate. Temperature profile de-
crease as the injection/suction parameter increases. It is found that the fluid
having largest temperature appears at the central section within the two plates
but not on the surface of upper plate when the injection/suction parameter S,
falls.

From Figure 3.12 it can be observed that temperature increases with the in-
crease in FEckert number. This is due to viscous dissipation and Joule heating.
The temperature increase significantly between the plates. Figure 3.12 also indi-
cates that the uppermost fluid temperature for the larger Eckert number appears
in the central section of the two plates and for the smaller Eckert number it ap-
pears at the surface of the upper plate.

In Figure 3.13 and Figure 3.14 the effects of squeeze number and the magnetic in-
clination angle on the skin friction coefficient and the Nusselt number are showed,
where the magnetic inclination angle varies from 0 to 7/2, respectively. It can
be found that the Nusselt number is decreasing function of the magnetic inclina-
tion angle but on contrary that the total value of skin friction coefficient is an
rising function. Moreover, the squeeze number enhancement causes an increment
in the total value of skin friction coefficient and Nusselt number to arise for same

fixed inclination angle.
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Chapter 4

Hybrid Nanofluid Flow between
Parallel Plates

4.1 Introduction

This chapter extends the work of Su and Yin [30] by considering inclined magnetic
field effects of unsteady squeezing hybrid nanofluid flow between parallel plates
with suction/injection. The Alumina (Al;O3) and Copper (Cu) are considered as
the hybrid nanoparticles and water is the base fluid. The necessary transforma-
tions are used to convert the governing coupled nonlinear PDEs into ODEs. In
order to solve ODEs, the shooting method is implemented in MATLAB. At the
end of this chapter, the numerical solution for various parameters for the dimen-
sionless velocity and temperature is discussed. The generated numerical findings

are examined using graphs.

4.2 Mathematical modeling

The problem considered in Chapter 3 is extended by using the hybrid nanofluid.
Figure (3.1) shows the geometry of the problem. The flow is described in the

43
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presence of suction/injection, viscous dissipation and Joule heating by continuity,

momentum and energy equation are as follows:

ou Ov

— 4+ —=0. 4.1

ox + dy 0 (4.1)

ou ou ou =1 0p | pipny (OPu  Ou

ot +u8x +U@y N Phnf Ox + Phnf <8x2 + Oy? *

oms B, . .

———" giny (vcosy — usiny) . (4.2)
Phnf

Ov ov v  —=10p  pumy (OPv v

ot +u8x Uay " Phny Oy + Phnf <8x2 + Oy?

OnnsBL, . .

—— giny (usiny — vcosy) . (4.3)
Phnf

or — OT ~ OT  kpey [(O°T  O°T [ ou\’

il il e 2 —

ot "oz T By T oC, s (8x2 o) T e P \a) T

ov\? ou v\’ Ohns B2 9

2\ = | +( =+ = + T (usiny —vcosy)”. 4.4

(0y> (&y 3%) ] pCy hnf( ! B 4

The corresponding boundary conditions of lower and upper plates are:

)
At y =0,
bx Vo
U=UUs =777, V=V=—""T""1,
1—at (1—04t)§
T ="1T,.
At y = H(t), (4.5)
b
u =0, u:usz—x,
1—at
dH ol
v = =—=-———",
T70d T 91—y
Ty
T =Ty ="1T; .
H 0+(1—at>

/

Here, u, denotes lower plate stretching velocity, v, represents lower plate mass flux
velocity, vy denotes upper plate velocity, Ty is the lower plate surface temperature
and Ty denotes the upper plate surface temperature. The following similarity
transformations are used to convert partial differential equations into set of ordi-

nary differential equations.
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U= ]-;_(J;)UH.}U(T’%

v=uvrf(n),

T—"1T
O(n) = 4.6
(n) To T (4.6)
= Ho

4.3 Dimensionless Structure of the Governing
Equation
Since the continuity equation (4.1) has been verified in Chapter 3.

By following the same steps as before, the momentum equations (4.2) and (4.3)

as well as the energy equation (4.4) have the following dimensionless form.

f(iv) . AlAZS (nf/// + 3f// + f/f// _ ff///) . A1A3M2

siny (sinvyf” + 20 cosyf") =0, (4.7)

" As I o 1 2 2 pr?
0" + <A4) P.S (6 —nf' —260) + E.P, KA1A4) (f 482 f )

A 2
+ (A—3> M? <f’ sin? v + 6% f% cos® v + 25ff/SiH7COSW)} =0, (4.8)
4

subject to boundary conditions:
(4.9)

where S, Pr, M, E. and R are the squeezing number, prandtl number, magnetic
parameter, Eckert number and lower plate stretching parameter, respectively. The

lower plate suction and injection is denoted by S, > 0 and S, < 0, respectively,
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(:OC )hnf

[ Py o’ ky (pCp)
Following correlation are used in the equation to obtain, [44]

= (1= ¢1)*°(1 — ¢2)*?,
(1—¢2) { 1—¢1)+¢1p"1}+¢2%’}2>,

n n kTL
and A, = HL 4, =Pl q _Tind o q  Bed g

an1(1+2¢1)+20'f(1 $1) on1(1—¢1)+05(2+¢1)

an1(1+2¢1)+20f(1 1) _
on2(1+2¢2) +2”f e 61 To7 3T }(1 ¢2)> <an1(1+2¢1)+2of(1—¢1))

on2(1=¢2) +"f on1(1=61)Fo; 2T 61) }(2+¢2)

kn2+26n 5 +02(Kns—Kn2) (kn1+26¢)+d1(Kf—Kn1)

|:<I€n2+21€nf 2¢2(an Kn2)> ((nn1+2nf)72¢1(nffnn1)>:|

1—¢2{1—¢1)+¢1pc)”1}+¢2 f]

TABLE 4.1: Thermophysical properties of hybrid nanofluid

Thermophysical Properties @ Hybrid Nanofluid

Density Phng = (1 = ¢2) [(1 — ¢1)ps + d1pn1] + 2pn2
Heat capacity (PCp)hns = (1 — ¢2)

(1= ¢1)(pCyp)p + d1(pCp)na] + P2(pCp)n2
Dynamic viscosity Phnf = (1_%)2,’;{1_@)2,5

Kn2+26p f —2¢2(Kn f —Kn2) (HJ )

Nn2+2l€nf+¢)2(/fnf7’€n2) nf
Fn1+26—2¢1(Kf—Fn1)

Kn1+2K5+01(Kf—Kn1) X (’if)

Thermal conductivity Khnf =

where, kK,r =

On2 +20nf —2¢2 (Unf _U'n2)

Electrical conductivity Ohnf = Gusi20rtoa(ons—ons) < (Ons)
3('—';n1 —1)¢1
where, 0,y =1+ ! X (of)
2+0;}1 (";}1 *)¢>1

TABLE 4.2: Thermophysical properties of AloO3, Cu and water

Thermophysical Properties  Al,O; Cu Water
p(kg/m?) 3970 8933 997.1
Cp(J/kgK) 765 385 4179
k(W/mK) 40 400 0.613
o(S/m) 3.69 x 10" 5.96 x 10 0.05

Prandle number, Pr 6.2
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4.4 Numerical Treatment

This section is dedicated to the implementation of the shooting method to solve

the transformed ODEs (4.7) and (4.8) subject to the boundary conditions (4.9).

One can easily observe that (4.7) is independent of #, so we will first find the

solution for (4.7). For this purpose, the following notations are used:

f=a,
=g =g,
1= g5=gs,
f" = g5 = ga,

Fi =g,

Utilizing the above notations, we have the following system of four first order

differential equations is obtained,

2U0 )
/ = N O = S = —
g1 = 92; 91(0) = Sy o

Ul
g = gs; 92(0) = R =

UVH
95 = gu; 93(0) = a,

gy = A1A25(393 + 194 + G293 — G194)+

A Az M?sin (20 cosvge + sinyga);  g4(0) = .

Vs

(4.10)

To solve the above system by using Runge Kutta method of order four, two missing

initial conditions are assumed to be a; and as, such that:

g1(n, a1, a2)p—1 —1 =0,

92(n, 01, @) =1 — 0 = 0.

These non-linear algebraic equations are solved for oy and as by Newton’s method

which has the following iterative scheme:
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" 991 997"
un G B, Do g1(ag, ) — 1 (4.11)
N | 092 Oga '
vt " —J2 ZI2 aq,an) —0
Oa;  Oay ga(0n, @)
To incorporate the above formula, we further need the following derivatives:
on _ o 09 O On_
aal g57 aal 65 aal 77 80{1 8
Doy 99, Dy 105 Dy 115 Dy 12-
As the result of these notations, the Newton’s iterative scheme gets the form:
) ~1
ut u” g, o) — 1
_ |95 99 g1(ay, az) . (4.12)
o " 96 910 g2(a1, a2) = 0

In order to achieve the numerical solution, we further differentiate the ordinary
differential equation (4.2) w.r.to oy and as. Hence, the following system of twelve

first order coupled differential equation is achieved with initial values.

2U0
/ e . O = S -
g1 g2; gl( ) b al )
Ug0
95 = 93; 92(0) =R=—,
UVH
93 = 945 93(0) = au,

gy = A1A455(393 + 1n9a + 9295 — G194)

+ A AgM? sin (26 cos gz + sinyga); 94(0) = as,
95 = 96: 95(0) =0,
96 = 973 96(0) =0,
97 = Gs; 97(0) =1,

gy = A1A25(397 + 19s + 9693 — G591 + 9297 — G1s)

+ Ay A3 M? sin (26 cos ygs + sinygr); 98(0) =0,
Gy = G10; 99(0) =0,
gio = 9g11; 910(0) =0,
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g1 = G12; g11(0) =0,
Gho = A1A2S(3g11 + g2 + 91093 — Goga + G291 — G1912)
+ Ay Ay M? sin (20 cos ygi0 + sin ygn); 912(0) = 1.

The Runge Kutta method of order four is used to solve the above initial value
problem, where oy and ag are unknown initial conditions. The iterative process

is repeated until the criteria listed below is met:

maXH 91(7770417052) -1 ‘7 | 92(777 a17a2> H <,

for an arbitrarily small positive value of e. Throughout this chapter ¢ has been
taken as (10)75.

Since (4.9) and (4.10) are coupled equations. So (4.10) will be solved separately
by incorporating the solution of (4.9). For this purpose let us denote:

0 =Y, 0 =Y =Y, 0" =Y,

to get the following first order ODEs.

/ A5
Yy =— 1 P.S(fYs —nYs —2Y1) +
X * A (4.13)
PE 1”4 p52 7 3 M2 (7 sin2
(AIA)H{f + 402 +(A4> (77 sin?~
+f262 cos®y + 20 f f' cosysiny)}] ; Y5(0) = m.

Vs

The above IVP is solved numerically by Runge Kutta method of order four. In

the above initial value problem, the missing condition m is to be chosen such that:

}/1(7]’ m)nil —-1=0, (414)

To solve the above algebraic equation (4.16) the Newton’s method is used which

has the following iterative scheme:
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oy, \ !
== (G2) il - 1),

Further considering the following derivatives:

Y, Y,

L Vs —==Y%,.
om 3 om 4

to formulate the following Newton’s iterative scheme:
m"+1 =m" — [}/E’)(ny mn)n:ﬂil (Yi (777 mn)n:1 - 1) : (415)

Here n is the number of iterations (n =0,1,2,3,4,5,...).
To incorporate the new derivative Y3 and Y} system (4.13) is further differentiated

w.r.to m, to get the following IVP:

Y] =Y5; Y1(0) =0,
As
V= KA_) P.S (D1Ys — Yy — 23) + (A1A4) P.E, {D2 + 45
A
D2+ A_iM2 (D2 — 2sin? v + D?6% cos® vy + 20D, D, cosvsinv) H i Y5(0) =m,
Y3,—1/4; Y3<0) :Oa
A
y;:—(Ai) P,S (D1Ys — nYy — 2Ys); 1) =1
4

The Runge Kutta method of order four has been used to solve the IVP consisting
of the above four ODE’s for some suitable choices of m. The missing condition m
is updated by using Newton’s scheme (4.15). If the following criterion is fulfilled

the iterative process is stopped:

Yi(n,m) — 1] <,

for an arbitrarily small positive value of €. Here € is taken as 1071Y throughout.
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4.5 Results and Discussion

In this segment of thesis, the influence of various dimensionless parameters on
velocity and temperature profile for the hybrid nanofluid flow have been discussed
and presented through the figures 4.1-4.13. The thermophysical properties of
Cu — AlyO3/water are used. The dimensionless parameters that influenced the
velocity and temperature profile are squeezing number (S), magnetic parameter
(M) , lower plates stretching parameter (R), magnetic inclination angle (y), Eck-
ert number (Ec), hybrid nanoparticles volume fractions (¢; and ¢,) and lower
plate suction/injection parameter (S,). The value of ¢; and ¢, have been taken
from [44].

Figure 4.1 demonstrates the distribution of fluid velocity close to the lower or
upper end of plates are decreasing due to rising of the squeeze number, but for
the velocity an opposite effect has been observed close to the centre between the
plates. It is noted from Figure 4.2 that rising the values of the squeezing parameter
causes reduction in the temperature. When the plates move close to each other,
the temperature field will be comparatively high.

Figure 4.3 and 4.4 represent the velocity and temperature profile for the variation
of magnetic parameter. It has been observed in Figure 4.3 that an increase in the
magnetic parameter causes the fluid velocity to increase at both ends (lower and
upper) of the plates, but the fluid velocity near the centre, quite slightly, shows
a noticeable decrease. The fluid in the central regions has larger Lorentz force
than the fluid near the plates. The reason is that the Lorentz force in fluid mo-
tion presents resistance, so it makes velocity slow down close the central region of
plates. Figure 4.4 shows that the fluid temperature rises from the lower to upper
plate surface when the magnetic field parameter rises. For the larger magnetic
value, the fluid temperature increases not only near the upper surface but also in
the centre between the plates. Actually, the strong magnetic field affects the tem-
perature distribution in the regions. Large friction along with a strong magnetic
field generates more heat in fluids.

Velocity and temperature profile have been shown through Figures 4.5 and 4.6 by
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rising value of the magnetic inclination angle. The angle of magnetic inclination
ranges between 0 and /2. Similar behaviors of velocity and temperature profile
have been obtained from both figures when compared to the corresponding pro-
files of different magnetic parameter values. The angle of magnetic field inclination
~ effects on both the fluid velocity and the temperature are similar to those of
the magnetic parameter. Therefore, the transfer of fluid in the squeezing move-
ment in practical applications related to momentum and heat control, the affects
generated by changing the strength of the magnetic field can also be obtained by
modifying the angle of magnetic field inclination.

Figure 4.7 and 4.8 show the affect of stretching parameter of the lower plate on
the velocity and temperature profile. In Figure 4.7 the fluid velocity increases
close to the lower plate as compared to the fluid velocity close to the upper plate.
Furthermore, as the stretching parameter on the lower surface rises, the maximum
value of velocity can be seen in the surface of lower plate. Figure 4.8 reflects that
when we rise the stretching parameter of the lower plate, the fluid temperature
above the lower plate decreases and increases thereafter, when we take the stretch-
ing parameter R > 1.5 the fluid temperature close to the lower plate increases.
Figure 4.9 and 4.10 represent the effects of lower plate suction/injection parame-
ter on the fluid velocity and temperature profile. Figure 4.9 indicates that with
increase in the lower plate injection/suction parameter, the velocity profile falls.
The fluid having peak velocity does not occur in the central area when extending
the lower plate for stronger suction through the lower plate and the velocity of the
fluid monotonically decreases from the surface of the lower plate to the upper
plate. Figure 4.10 shows that the temperature profile decrease as the injection/-
suction parameter increases. It is found that the fluid having largest temperature
appears at the central section within the two plates but not on the surface of upper
plate when the injection/suction parameter S, falls.

The temperature for different values of Eckert number was shown in Figure 4.11.
A clear temperature rise is observed to increase the values of Eckert number. This
increase in the thermal field is evident because Eckert has directly affects on the

process of heat dissipation, which in turn increases the temperature field between
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the plates. Figure 4.11 also indicates that the maximum fluid temperature occurs
in the centre between the two plates for larger Eckert number, whereas it tends to
be smaller in the upper plate.

Figure 4.12 and 4.13 demonstrate the effects of the squeeze parameter and mag-
netic angle on the coefficient of skin friction and the Nusselt number, where the
magnetic inclination angle ranges among 0° to 90°. The absolute value of skin
friction and Nusselt number may be noticed as a decreasing function of the angle
of magnetic inclination. Whereas, for the increasing in squeeze parameter and
keeping the angle of magnetic inclination fixed, the Nusselt number decreases and

skin friction coefficient increases.

R=0.5, M=0.5, y==/6, =0.1,
or S,=0.1, ¢,=0.1, $=0.02

_0-2 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n

FIGURE 4.1: Impact of the squeeze number S on the longitudinal velocity
profile.
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FIGURE 4.2: Impact of the squeeze number S on the temperature profile.
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FIGURE 4.3: Impact of the magnetic parameter M on the longitudinal velocity
profile.
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FIGURE 4.4: Impact of the magnetic parameter M on the temperature profile.
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FIGURE 4.5: Impact of the magnetic inclination angle v on the longitudi-

nal velocity profile.
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FIGURE 4.6: Impact of the magnetic inclination angle v on the temperature
profile.
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FIGURE 4.7: Impact of the lower plate stretching parameter R on the longitu-
dinal velocity profile.
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FIGURE 4.9: Impact of the lower plate suction/injection parameter S, on the

longitudinal velocity profile.



Hybrid nanofluid flow

1.4

1.2

Sb=-0.5
S =

Sb=0.5
Sb=0.9

S$=0.5, R=0.3, M=2.0,~y=n/4, 6=0.1,
Pr=1.0, Ec=0.3, ¢,=0.1, ¢,=0.02.

FIGURE

0.1

0.2

0.3

0.4

0.5 0.6 0.7 0.8 0.9
n
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FIGURE 4.12: Impact of the magnetic inclination angle v and the squeezing
number S on the skin friction coefficient.
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FIGURE 4.13: Impact of the magnetic inclination angle v and the squeeze
number S on the Nusselt number.



Chapter 5

Conclusion

This section will conclude the whole research eventually. Hence this section
presents the precise analysis of an inclined magnetic field effects on the squeezed
hybrid nanofluid flow between parallel plates with suction/injection through the
stretching lower plate. By utilizing similarity transformation we reduced the set
of nonlinear PDEs into a set of nonlinear ODEs and then solved numerically. Nu-
merical results are obtained for the set of nonlinear ODEs by using the well known
shooting technique with Runge Kutta method of order four (RK4). Significance of
the effect of different physical parameters under discussion on the dimensionless
velocity and temperature are describe graphically. The skin friction and the Nus-
selt number for different value of the distinctive governing parameters are also

presented graphically. The following key notes are observed.

1. Increasing the value of squeeze parameter (S), the velocity close to the lower
or upper end of plates is decreasing, but the velocity profile decreases at the

centre of the plates and the temperature profile tends to decrease throughout.

2. The magnetic field (M) has a direct relation with the temperature profile

and an inverse with the velocity profile.

3. Increasing the angle of magnetic inclination(y), the velocity close to the

lower or upper end of plates is decreasing, but an opposite effect has been
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observed close to the centre between the plates. The temperature profile

tends to increase.

4. The lower plate suction/injection parameter (Sp) is an inverse relation with

the velocity and temperature profile.

5. Increasing the value of the Eckert number (Ec¢), the temperature profile

tends to increase.

6. For the increment of squeeze parameter (S) and the angle of magnetic incli-
nation (7), the skin friction (C}*) increases and the Nusselt number (Nusx)
decreases. Moreover, both skin friction and Nusselt number are increasing

function of angle of inclination.
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